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Abstract

Abandoned vehicles sent into projectile motion are potential threats to saferooms during a
tornado. The main goal of this dynamic Finite Element Analysis is to better understand how well
a slope face storm shelter can withstand damage from a vehicular impact and compare the
results to an OZ saferoom of different geometry. The analysis would determine whether the
concrete-based structures could withstand the collision under the testing requirements of the
NCAC/CCSA.

This report analyzes the slope face shelter with two unique internal rebar structures, one
measuring 12” between rebar straights, and the other measuring 14” between them. The slope
face shelters maintained a roof thickness of 4” while the OZ saferoom had a roof thickness of
18”. All simulations tested the impact of a Chevrolet C2500 pickup truck with an initial velocity
of 35 mph dropped vertically overtop the shelter. The truck was given a tilt angle of 20° from the
vertical axis to emulate a more realistic drop scenario. A secondary lateral simulation was run
to provide further insight on the shelter’s effectiveness.

The slope face shelter was first modeled in Solidworks and exported to ANSYS simulation
software. In ANSYS, body interaction characteristics, contact parameters, boundary conditions,
and meshes were defined. The model was then exported to LS-DYNA, where the simulation
was given initial conditions and tested.

The simulations show that both slope face shelter models were unable to withstand the impact
of the airborne truck without collapsing. The roofs suffered heavy damage in their centers and
cracks propagated outward towards the corners of the shelters. Such a structural collapse
could potentially cause harm to persons inside. Conversely, the OZ saferoom withstood the
vehicular impact. Similar results were seen in the lateral tests. However, the maximum
displacement was not as great in the lateral simulations since the truck’s impact area on the roof
was increased and the forces associated with the impact were more dispersed.
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1. Numerical Methods

The numerical material models simulated in this report track the time history of damages and
displacements for individual elements and global geometries. Through these simulations, one
can compare the impact damages visually and quantifiably for a greater understanding of how
the shelters perform in real-world conditions. These models were run in industrial standard
software ANSYS release 17.2 and LS-DYNA PrePost 4.3-x64, according to parameters
published in the scientific literature. Simulations take many hours to accurately capture data on
element-by-element relationships and other material-based properties over finite, discrete time
intervals. Stringing the static data together, it is possible to visualize the impact dynamically.

All simulations employ the Riedel-Hiermaier-Thoma model built into ANSYS for the concrete
material properties (MAT-272). For the rebar structure encased within the shelter, the default
steel properties from ANSYS were selected (MAT-001). These ANSYS-generated materials
apply the properties for compressive, shear, and tensile stresses into the model for an accurate
representation of the system response.

LS-DYNA was used to run the simulation as well as process the results in post-simulation. The
program is comprised of LS-PrePost and LS-PostProcessor, which analyze the model at
different phases of the simulation process. An analysis of the post-processed damage results,
including graphics of the slope face shelter and comparisons to the OZ saferoom simulation, is
included in the Results section of this report.



2. SolidWorks 2015

A SolidWorks 3D model was constructed for the 6’ x 8’ Slope face shelter according to
specifications provided by OZ Saferooms Technologies. Dimensional drawings are shown in
Figure 2.1 below. For the purpose of displaying the shelter’s general size and shape, some
dimensions were omitted. Notice that there is a taper angle to the base’s vertical walls of 2.14°
and another taper angle to the top’s vertical faces of 1.9°. The ventilation holes on the shelter
roof have diameters of 8” and 6” respectively [1]. Soil was modeled to add soft compression to
the contact between the ground and shelter, increasing the accuracy of the dynamic simulation.

The model is comprised of three separate components. The top of the shelter is glued and
bolted to the recessed bottom structure at a seal joint [1]. The door was modeled as a steel
plate and rests in the opening at the top of the shelter. For additional details, an exploded view
of the assembly can be seen in Appendix 1.
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Figure 2.1: SolidWorks model for the slope face tornado shelter. Rebar is not included in this model. The base of the design is
submerged below ground during implementation. The soil is not included in this image for clarity. General dimensions are provided
for an understanding of the design scale.



3. ANSYS MODEL

Once the SolidWorks model was created, it was imported in ANSYS 17.2 and meshed to create
the elements and nodes that would be analyzed in LS-DYNA. Figures 3.1.1 and 3.1.2 show the

ANSYS model without and with meshing.
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Figure 3.1.1: ANSYS model for the slope face shelter. Meshing not shown in this visual.
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Figure 3.1.2: ANSYS model for the meshed slope face shelter. The model is shown with soil (left) and without (right).




In ANSYS, a mesh that provided clean hexahedral elements and minimal lattice imperfections
on the top surface was required. Figure 3.3.1 and Figure 3.3.2, shown on the following page,
display the cross-sectional lattice and top surface lattice of the shelter, respectively. Table 3.2
presents the parameters used to mesh the respective shelter components along with the
corresponding element quantities. Notice that the soil, door, and base were assigned meshes of
larger lattices since they were less critical to the impact analysis. This translates to more
accurate results in the impact zone while reducing computational time.

Body interaction characteristics were then assigned to the different interfaces of the shelter. The
base interfaces with both the top and soil through frictional contact, whereas the door and top
interface through bonding contact. A value of 0.2 was applied for both frictional and dynamic
coefficients. The simulation was assigned a run time of 0.15 seconds and a program-controlled
time step. For boundary conditions, a no displacement condition was applied to all faces of the
soil and standard Earth gravity (-9.8066m/s?) was applied to the center of the shelter.

Table 3.2: ANSYS Meshing Parameters

Component Element Size [mm] Number of Elements
Top 23 114008
Door 50 1363
Bottom 50 17961
Soil 100 18424

Total 151756




Figure 3.3.1: Cross-sectional view of the meshed lattice, positioned at the inside corner of the roof of the Slope face shelter . Note
that it is predominantly hexahedral with few lattice imperfections.

Figure 3.3.2: View of the meshed lattice on the top surface of the Slope face shelter. Note that the mesh is predominantly
hexahedral with few lattice imperfections.



4. LS-DYNA MODEL

The ANSYS-meshed model was imported into LS-PrePost 4.3-x64 where the internal rebar was
constructed within the geometry. One of the Slope face shelter models was created with 12”
gaps between peripheral rebar straights and the other with 14” gaps between them. The rebar
elements followed the specifications from the slope face shelter datasheet, indicating that the
bars were to lie within a %" tolerance of their identified locations. The rebar elements were also
constrained to be 1” from the outer vertical walls, 2 V4" from the outer bottom surface, and 1”
from all inside surfaces [1]. The #4 rebar was given a diameter of 0.5” and conformed to the
ASTM A615 [2] standard for reinforcing steel. The rebar was constructed in a cage-like fashion,
with all peripheral straights connected, including at each corner. Additional properties were
assigned according to Table 4.1 below.

Table 4.1: Slope face shelter Simulation Parameters of Vehicle Drop Simulation

Group Name Value Unit Notes

Top Width (X) 76 in eqgv. 1930 mm
Top Length (2) 63.5 in eqv. 1612 mm
Top Thickness (Y) 4 in eqv. 102 mm
Bottom Width (X) 74 in eqv. 1880 mm
Bottom Length (2) 98 in eqgv. 2489 mm
Bottom Thickness (Y) 4.5 in eqv. 114 mm
Rebar Diameter #4 Gauge eqv. 0.5" OD
Rebar Grade 40 ksi eqv. 276 MPa
Door Thickness 12 Gauge egv. 2.66 mm
Door Strength >36 ksi eqgv. 276 MPa
Concrete | Compressive Strength >6000 psi at 28 days

Note that the Top only includes the unsloped surface area.



A Chevrolet C2500 model, developed by the NCAC/CCSA [3], was then imported and aligned in
the model for crash impact analysis. Figure 4.2 illustrates the detailed vehicle model tested in
this report. The detailed model contains internal design structures such as the vehicle’s seats,
as well as an accurate weight balance for impact testing.

Figure 4.2: Chevrolet C2500 detailed design model provided by the NCAC/CCSA [3]. The truck was given a 20¢ tilt angle from the
vertical axis.

The vehicle was positioned 2.16” above the top surface of the Hausner shelter in ANSYS. The
truck’s center of mass was located overtop the shelter roof and the vehicle was assigned a 20°
tilt from the vertical axis to emulate a realistic impact scenario.

Initial conditions and various material and testing parameters were assigned to the combined
model. An initial velocity of 35 mph was given to the truck, as though it had been launched by
the heavy winds of an EF5 tornado. It was determined that acceleration would have negligible
impact on the speed of the vehicle over such a small distance, so gravity was ignored to speed
up the time of computation.

The shelter roof contained 114,000 elements for both the 12” and 14” models. The effective
volume of the horizontal slab of the roof was consequently 0.317 m3. This slab would be the
surface most directly affected by the impact. Table 4.3 defines the distribution of system
elements along with the material properties assigned to the shelter, soil, rebar, and door. LS-
DYNA'’s Mechanical Solver was used to run the simulation and write the output binary files for
post-processing. The files created were approximately 11.6 MB in size and the simulations took
roughly 100 hours to run each.
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Table 4.3: Initial Conditions and Material Properties of Vehicle Drop Simulation

Group Name Value Unit Source Notes
Vehicle Mass 1923 kg NCA/CCSA | egv. 4,250Ib
Initial Velocity 15646 | mm/s NCA/CCSA | eqv. 35mph
Concrete Compressive Stress 34.5 MPa LS-DYNA RHT concrete
Relative Shear 0.18 - LS-DYNA RHT concrete
Strength
Tensile Force 0.18 MPa LS-DYNA RHT concrete
Shear Elastic Modulus | 0.7 GPa LS-DYNA RHT concrete
Density 2.3 Mg/m?3 LS-DYNA RHT concrete
Soll Density 2.35 Mg/m?3 FHWA [5] FHWA
Nebraskan
soil
Truck FE Detailed Truck Model | 58313 | No. Elements
Model
12" FE 12" Top Only 114008 | No. Elements
Model
12" Shelter (no soil) 134382 | No. Elements
Entire 12" Model 210656 | No. Elements
14” FE 14" Top Only 114008 | No. Elements
Model
14" Shelter (no soil) 141836 | No. Elements
Entire 14" Model 218573 | No. Elements
Simulation Runtime 100 h Approximate
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5. RESULTS

A total of 24 simulations were run in LS-DYNA to achieve consistent and reasonable results and
to evaluate whether there was a slight possibility that the Hausner shelter could withstand the
impact. The 12-inch and 14-inch rebar models were also compared to examine whether there
were any large discrepancies between the two models. RHT model History Variable #4 tracks
the accumulation of plastic strains and corresponds to zones where model elements are failing.
In this section, a summary of these simulations is presented and History Variable #4 is shown
on the right hand side of each figure. A History Variable #4 value of 1 indicates failure of an
element, while a value of 0 indicates no damage.

Figure 5.1: Post-simulation collision of the pickup truck into the slope face shelter.

5.1 20° Drop Test on the 12-Inch slope face shelter Rebar Model (12” Run 6)

This simulation was performed with the same parameters used in the OZ Saferoom analysis [6].
Results show that the roof of the 12” rebar model failed from the center, with cracks propagating
outward toward the corners of the structure, typical of reinforced concrete failure. Damage was
also seen at the perimeter of the concrete structure as the weight began to accumulate on the
rooftop and put pressure on the surface. The roof displayed visible deflection, indicating the
beginning of a collapse in the design. Holes formed by the end of the simulation, demonstrating

12



that the shelter was unable to withstand the impact. It was also observed that the door warped
and lost contact at its supports. The following figures show key instants in time where cracks
and holes began forming on the shelter top. For clarity, only the top part of the shelter is shown.
A separate figure displays the damage to the door post-simulation. The full animation of the

simulation is captured on the attached CD, under filenames RUN6_Front.wmv and
RUNG6_top_HV4.wmv.

Figure 5.1.1: 12-Inch slope face shelter (12" Run 6) impact at 0.049s. The first cracks are appearing in the center of the roof.
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Figure 5.1.2: 12-Inch slope face shelter (12" Run 6) impact at 0.150s. Holes have formed in the shelter roof. The simulation has

reached normal termination.

——1 |
—t——t |
—r 1 |
—— 1|
—
== .|
o e
—1
3 D e T /
— 1 7
(=
—1
—— 1 — +t
St k| 7
—t
T R e o S
1
1|
o o
S 7
—
—— | ——t—
& AT e e |
——1—] |
1 | E
—1 | = :
—t—] | F—t—t
[
:
=l L )
—1—1 | —— i
F——t—
| — | ]
= —1 1 |
— |
] ——t |
=
—1
1 |

Figure 5.1.3: 12-Inch slope face shelter (12" Run 6) door at the end of the simulation, showing warpage.
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Figure 5.1.4 shows the cross-sectional view of the maximum displacement immediately before
holes formed in the structure. This image shows large plastic deformation on the roof of the
structure during impact and shearing of the elements on the edges. Figure 5.1.5 shows the
rigid body displacement for the top during the time of simulation. Averaging the entire rigid body
vertical displacement of the roof, the top of the shelter sinks 146 mm. However, selecting nodes
at the center of the shelter roof, the displacement was seen to be 175 mm immediately before
holes began forming. The maximum vertical acceleration was 75 m/s?, shown in Figure 5.1.6.

Figure 5.1.4: 12-Inch slope face shelter Rebar Model (12" Run 6) cross section, displaying maximum deflection in the concrete
before holes formed in the structure. The capture was taken 0.063s into the simulation.

12-Inch Rebar Model: Y-Direction Rigid Body Displacement
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Figure 5.1.5: 12-Inch Rebar Model (12" Run 6): Rigid Body Vertical Displacement of the slope face shelter top with no filter applied.
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12-Inch Rebar Model: Y-Direction Rigid Body Acceleration
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Figure 5.1.6: 12-Inch Rebar Model (12" Run 6): Rigid body acceleration of the slope face shelter top in the vertical
direction. A 9-point averaging filter was applied to better isolate the acceleration signal from the noise.

5.2 20° Drop Test on the 14-Inch Slope Face Shelter Rebar Model (14” Run 3)

A separate simulation was run using a rebar structure spaced 14” with the same parameters
used in the 12” rebar model analysis. Results show that the roof of the 14” rebar model failed in
the same way that the 12” model failed, with cracks forming along the perimeter and in the roof
center. The following figures show key instants during the simulation where cracks and holes
began forming on the shelter top. For clarity, only the top part of the shelter is shown. A
separate figure displays the damage to the door post-simulation. The full animation of the
simulation is captured on the attached CD, under filenames RUN3_Front_ HV4.wmv and
RUN3_Top_HV4.wmv.
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Figure 5.2.1: 14-Inch slope face shelter (14" Run 3) impact at 0.049s. The first cracks are appearing in the center of the roof.

Figure 5.2.2: 14-Inch slope face shelter(14” Run 3) impact at 0.150s. Holes have formed in the shelter roof. The simulation has
reached normal termination.
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Figure 5.2.3 shows the cross-sectional view of the maximum displacement immediately before
holes formed in the structure. This image shows large plastic deformation on the roof of the
structure during impact and shearing of the elements on the edges. The maximum rigid body
displacement was found to be 137 mm, while the elements at the center displace 172 mm. The
rigid body deflection in the vertical direction is shown in Figure 5.2.4. The maximum
acceleration was 78 m/s2, shown in Figure 5.2.5.

Figure 5.2.3: 14-Inch Rebar Model (14” Run 3) cross section, displaying maximum deflection in the concrete before holes formed in
the structure. The capture was taken 0.063s into the simulation.
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Figure 5.2.4: 14-Inch Rebar Model (14” Run 3): Rigid Body Vertical Displacement of the slope face shelter top with no filter applied.
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14-Inch Rebar Model: Y-Direction Rigid Body Acceleration
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Figure 5.2.5: 14-Inch Rebar Model (14” Run 3): Rigid body acceleration of the slope face shelter top in the vertical
direction. A 9-point averaging filter was applied to better isolate the acceleration signal from the noise.

From this set of simulations run on the slope face shelters, it was concluded that there were
no significant differences to using one internal rebar design versus the other. The damage,

deflections, and accelerations were analogous, but ultimately all corresponded to failure in the

shelter design when tested against the pickup truck impact. These results were consistently
reinforced through all 24 simulations.
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6. MODIFYING PARAMETERS

Following the results from Section 5, parameters and drop conditions were modified to analyze
the damage effects on the shelter. The simulations varied the drop angle, initial velocity,
Hourglass parameter, and Eroding Plastic Strain parameter. The corresponding results were
compared to the initial test results. The Hourglass parameter modifies the non-physical
energies associated with deformation that produce zero stress and strain. The Eroding Plastic
Strain parameter controls the degree to which elements can stretch before failing in simulation.
These simulations were performed to determine whether the Hausner shelters could withstand
the truck impact under a different set of conditions. This section presents a summary of findings
after varying different parameters.

6.1 20° Drop Test on the 12-Inch Slope Face Rebar Model (12” Run 14)

In this simulation, all conditions from the 20° Slope face shelter impact test were maintained with
the exception of the Eroding Plastic Strain parameter and the Hourglass parameter. The
Eroding Plastic Strain Parameter was set to a value of 1. In previous runs, this parameter had a
value of 2. The lower Eroding Plastic Strain value causes the concrete elements to stretch less
before failing and disappearing from the simulation. Hourglass settings were also added where
they had previously been absent. Figures 6.1.1 and 6.1.2 show the shelter deformation at key
instants during the simulation. The full animation of the simulation is captured on the attached
CD, under filenames RUN14_Top_HV4.wmv and RUN14_Front_HV4.wmv.

Figure 6.1.1: 12-Inch slope face shelter (12" Run 14) impact at 0.049s. The first cracks are appearing in the center of the roof.
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Figure 6.1.2: 12-Inch slope face shelter (12" Run 14) impact at 0.167s. Holes have formed in the shelter roof.

From Figures 6.1.1 and 6.1.2, it can be seen that the slope face shelter begins failing as
previously observed. Under these conditions, one of the side walls experienced large
deflection in the lateral direction, causing the roof to detach from the wall. The roof continued
to sink and deflect until it failed catastrophically. Figure 6.1.3 shows the cross-sectional view
of the maximum displacement immediately before holes formed in the structure. Figure 6.1.4
shows the rigid body displacement for the top during the time of simulation. Averaging the
entire rigid body displacement of the roof, the top of the shelter sinks 148 mm. However,
selecting nodes at the center of the shelter roof, the displacement was seen to be 201 mm
immediately before holes began forming. The maximum acceleration was 73.5 m/s?, as shown
in Figure 6.1.5.
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Figure 6.1.3: 12-Inch Rebar Model (12" Run 14) cross section, displaying maximum deflection in the concrete before holes formed
in the structure. The capture was taken 0.063s into the simulation.
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Figure 6.1.4: 12-Inch Rebar Model (12” Run 14): Rigid Body Vertical Displacement of the slope face shelter top with no filter applied.
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Figure 6.1.5: 12-Inch Rebar Mode (12” Run 14)l: Rigid body acceleration of the slope face shelter top in the vertical
direction. A 9-point averaging filter was applied to better isolate the acceleration signal from the noise.

6.2 Lateral Drop Test on the 12-Inch Slope Face Shelter Rebar Model (12” Run
12)

For this simulation, the truck was repositioned horizontally, maintaining the same downward
initial velocity of 35 mph, as seen in Figure 6.2. An Eroding Plastic Strain parameter of 1 and
the Hourglass settings used in Section 6.1 were incorporated.

Figure 6.2: Experimental setup of lateral pickup truck drop using detailed Chevrolet C2500 model, as provided by the NCAC/CCSA
[3].
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Figures 6.2.1 and 6.2.2 show the progression of damage accumulated by the shelter roof
during the lateral impact at key instants during the simulation. The full animation of the
simulation is captured on the attached CD, under filenames RUN12_Top_HV4.wmv and
RUN12_Front_HV4.wmv.

From these figures, it can be seen that the shelter begins to fail along the edges before caving
in at its center and forming holes. As in all previous cases, the door lost contact with its
supports and warped as a result of the impact.

Figure 6.2.1: 12-Inch Lateral slope face shelter (12” Run 12) impact at 0.020s. Cracks begin forming on the edges of the shelter
and damage is seen more evenly distributed across the roof.
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Figure 6.2.2: 12-Inch slope face shelter (12" Run 12) impact at 0.095s. The edges of the shelter have accumulated considerable
damage and holes are forming at the center.

Figure 6.2.3 shows the cross-sectional view of the maximum displacement immediately before
holes formed in the structure. Figure 6.2.4 shows the rigid body displacement for the top part
during the time of simulation. Averaging the entire rigid body displacement of the roof, the top
of the shelter sinks 77 mm. However, selecting nodes at the center of the shelter roof, the
displacement was seen to be 287 mm immediately before holes began forming. The maximum
acceleration was 25 m/s?, shown in Figure 6.2.5.

Figure 6.2.3: 12-Inch Rebar Model (12" Run 12) cross section, displaying maximum deflection in the concrete before holes formed
in the structure. The capture was taken 0.43s into the simulation.
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12-Inch Rebar Model: Y-Direction Rigid Body Displacement
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Figure 6.2.4: 12-Inch Rebar Model (12” Run 12): Rigid Body Vertical Displacement of the slope face shelter top with no filter applied.

12-Inch Rebar Model: Y-Direction Rigid Body Acceleration
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Figure 6.2.5: 12-Inch Rebar Model (12" Run 12): Rigid body acceleration of the slope face shelter top in the vertical
direction. A 9-point averaging filter was applied to better isolate the acceleration signal from the noise.
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Figure 6.3: Post-simulation lateral collision of the pickup truck into the slope face shelter.
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7. COMPARATIVE ANALYSIS WITH THE OZ SAFEROOM

Previous research analyzed the OZ saferoom using the same techniques described in this
report [6]. For comparative analysis, the 20° and lateral drop tests on the OZ saferoom are
discussed in this section.

7.1 Oz Saferoom Model Results for 20° Impact Scenario

For the 20° impact test, the OZ saferoom withstood the impact of the airborne vehicle without
warping or failing under the same initial conditions and input parameters. Figure 7.1.1,
displaying only the roof of the saferoom, presents the damages experienced during simulation.
Only minor damage is seen on the top surface of the roof and no damage was incurred on the
bottom surface. This indicates that there is no penetration of the truck to the saferoom and that
the saferoom withstands the impact completely. The full animation of the simulation is captured
on the attached CD, under filenames 0Z20deg_Top_HV4 and OZ20deg_Front_HVA4.

According to Figures 7.1.2 and 7.1.3, a maximum vertical rigid body displacement of 0.0976
mm and a maximum vertical rigid body acceleration of 1.17 m/s? were seen in the OZ saferoom
analysis. Therefore, the Hausner shelter vertically deforms approximately 1500 times more and
accelerates approximately 60 times more than the OZ saferoom. From Figure 7.1.2, it can also
be seen that the roof of the OZ saferoom oscillates to absorb the impact energy, whereas the
roof of the slope face shelter sinks as seen previously in Figure 7.1.5.

Figure 7.1.1: OZ Saferoom Model: Damage accumulation of roof elements. The left image displays the top surface of the roof.
The right image displays the bottom surface. Notice that there is considerably less stress and warpage seen in the OZ saferoom
than there was for either of the Hausner shelter designs.
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Figure 7.1.2: OZ Saferoom Model: Rigid body vertical displacement of the roof center with no filter applied. Notice that the
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displacement is oscillatory in nature, absorbing the shock and suffering minimal damage consequently.
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Figure 7.1.3: OZ Saferoom Model: Rigid body acceleration of the shelter top in the vertical direction. A 9-point averaging filter
was applied to better isolate the acceleration signal from the noise. The acceleration is oscillatory in nature, absorbing the shock
and suffering minimal damage consequently.
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7.2 Oz Saferoom Model Results for Lateral Impact Scenario

Similarly, in the lateral impact test, the OZ saferoom withstood the impact of the airborne
vehicle. Once again, no warpage or failure was seen in the saferoom roof under the same initial
conditions and input parameters. Figure 7.2.1 displays the initial setup for this simulation.
Figure 7.2.2 displays a snapshot of the simulation at the greatest point of impact between the
truck and the saferoom.

Figure 7.2.3 analyzes the damage accumulation on the top of the saferoom roof. An image
displaying the bottom of the saferoom roof has been omitted, as once again, there was no
visible damage. From Figure 7.2.3, it can be seen that some superficial damage exists
primarily on the roof edges, but it does not penetrate through the thickness of the roof. As
before, no penetration of the truck was observed during simulation. The full animation of the
simulation is captured on the attached CD, under filenames OZLat_Top_HV4.wmv and
OZLat_Front_HV4.wmv.

Figure 7.2.1: Experimental setup of lateral pickup truck drop on OZ saferoom.
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Figure 7.2.2: Post-simulation lateral collision of the pickup truck into the OZ saferoom.

Figure 7.2.3: OZ Saferoom Model: Damage accumulation of roof elements post-simulation.
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Figures 7.2.4 and 7.2.5 present the Rigid Body Displacement and Acceleration of the roof of
the OZ saferoom up to the point of maximum contact between the truck and the roof. A
maximum vertical rigid body displacement of 0.175 mm and a maximum vertical rigid body
acceleration of 2.89 m/s2 were seen in the OZ saferoom lateral analysis. Therefore, the
Hausner shelter vertically deforms approximately 800 times more and accelerates
approximately 25 times more than the OZ saferoom. From Figure 7.2.4, it can also be seen
that the roof of the OZ saferoom again oscillates to absorb the impact energy.

1> 0Z Saferoom Model: Y-Direction Rigid Body Displacement
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Figure 7.2.4: OZ Saferoom Model: Resultant nodal displacement of the roof center with no filter applied. Notice that the
displacement is oscillatory in nature, absorbing the shock and suffering minimal damage consequently.
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Figure 7.2.5: OZ Saferoom Model: Rigid body resultant acceleration of the shelter top. A 9-point averaging filter was applied to
better isolate the acceleration signal from the noise. The acceleration is oscillatory in nature, absorbing the shock and suffering

minimal damage consequently.
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8. Simulation Results

Table 8.1: Summarized Results of Key Simulations

Metric Max Max Damage Area Damage Depth
Displacement | Acceleration

Units mm m/s? cm? mm

Slope Face Shelter 146.13 74.942 31135 101.6*

(12" Rebar Run6)

Slope Face Shelter 136.67 75.637 31135 101.6*

(14” Rebar Run3)

Slope Face Shelter 148.03 73.596 31135 101.6*

(12" Rebar Run14)

Slope Face Shelter 76.64 64.267 31135 101.6*

(12" Rebar Run12)

OZ Saferoom 0.098 1.369 2919 304.8

OZ Saferoom Lateral 0.175 6.044 5094 125.0

* the damage depth to the slope face shelter broke completely through the thickness of the roof, which was only 4 Inches. The
0Oz Saferooms shelter had a larger thickness of 18 Inches, and the damage penetrated further than 4 Inches into the concrete
but didnot penetrate completely through.
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9. CONCLUSIONS

In total, 24 simulations were run on the Slope face shelters in ANSYS and LS-DYNA following
industrial standards. The precise behavior of the shelter after initial failure was difficult to
predict due to the break-down of the concrete-rebar interaction. The simulations are most
accurate until the point of shear failure at which point demonstrate that the Slope face shelter
can’'t withstand the impact. After that point the simulation only gives approximate behavior of
the solid materials. In these simulations, the rebar geometries were assigned rigid connections
and treated as one elastic part which it is only suitable for problems with small deformations like
in the case of the OZ Saferoom. Nevertheless the behavior of the concrete and the rebar is a
good approximation that demonstrate the collapsing of the ceiling under all cases investigated.

An analysis of the damage incurred by each shelter indicates that the Slope face storm shelters
were unable to adequately protect persons inside from an overhead vehicular impact while the
Oz saferoom was. The observed differences were primarily a consequence of differences in
slab thickness. The Hausner models utilized 4” thick concrete plates upon their top surfaces,
while the OZ saferoom model utilized a considerably greater 18” of concrete for their roofs. This
translated into a volume of 0.317 m? of reinforced concrete protecting persons in the slope face
shelter models versus 4.98 m? of protection in the OZ saferoom. With more reinforced concrete
protection, the OZ Saferoom did not collapse upon impact, but rather oscillated and diffused the
impact energy. The Slope face shelters were deemed ineffective against airborne vehicular
collisions since structural collapse was clearly seen in the simulations.

Conclusively, it can be noted that roof thickness and effective roof volume play a crucial role in
storm shelter performance. Greater thickness allows for absorption of shock from impacts,
while thinner surfaces tend to be brittle and shatter under appreciable impacts. Energy can
consequently be dispersed throughout greater material volumes without creating sudden
increases in kinetic energy that would cause the structures to collapse. While rebar aids in the
absorption of impact energy, there were not considerable differences between the behaviors of
the 12-inch and 14-inch Slope face shelter rebar models.

The OZ saferoom displacement and acceleration plots are more oscillatory than the Slope face
shelter models’ plots. When the truck impacted the OZ saferoom top, the concrete seemed to
respond by reverberating and dampening the shock over time. This is why the graphs of
acceleration and displacement display a spike at the instant of impact and then trend towards
static equilibrium thereafter. In the Slope face shelter model plots, there is no oscillation. The
displacements simply trend further from equilibrium while the accelerations display only a
primary spike from the initial collision. This appreciable difference in graphical responses
demonstrates how and why the OZ saferoom shelter didn’t fail while the Slope face shelters did.
A structure that absorbs impact through oscillation fairs better in impact tests than one that is
unable to dampen the shock.

The Slope face shelters were unable to withstand the truck impact through any combination of
initial conditions. The Eroding Plastic Strain parameter and Hourglass settings seemed to have
minimal effect on the shelter’s ability to protect persons inside, despite changing how the shelter
deformed. Lower Eroding Plastic Strain values and added Hourglass settings caused elements
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of the shelter to disappear with less deformation, but larger values did not prevent the shelter
from collapsing. The positioning of the truck only affected the damage area and how cracks
formed in the roof. The 20° impact test presented a more damaging scenario, but even the
lateral impact test saw failure in the Hausner shelter.

The penetration of the damage during the truck drop simulation appears to be much higher in
the OZ Saferoom than in the Slope face shelter, however these results need to be interpreted
as follow. In both tests, the damage is very localized in a small area of the OZ Saferoom and
the nodes underneath this area will experience larger stresses and strains than allowed by the
RHT concrete model, this means that these nodes are weaker than the ones in the rest of the
structure but the damage does not penetrate to the interior face of the OZ Saferoom, therefore
scabbing in the interior face is not observed. Since the damage is not extensive in area and
penetration, compared to the total area and thickness of the OZ Saferoom roof, this damage is
not significant to the structure. For the case of the Slope face shelter, the damage penetrates all
the way through the roof causing cracks and collapse of the structure.

It was also observed that the door of the Slope face shelter tends to wrap and loose contact with
the edges of the structure during the impact. In the case of an EF5 tornado it is more likely that
with the forces caused by the wind and the impact, the door will be lost.

Ultimately, it can be said that the Slope face shelters were not designed to withstand an

airborne pickup truck impact since catastrophic failure was seen in every simulation, this can
cause serious injuries to the occupants of the shelter.
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